2008

№ 3

НОВЫЕ МЕТОДЫ И ПРИБОРЫ В ГОРНОМ ДЕЛЕ

УДК 622.7

МЕТОД ИМПУЛЬСНОЙ ЭЛЕКТРОДИНАМИЧЕСКОЙ СЕПАРАЦИИ МАЛЫХ ПРОВОДЯЩИХ ЧАСТИЦ

В. И. Дядин, В. Ю. Кожевников, А. В. Козырев, В. Г. Подковыров, Н. С. Сочугов

Институт сильноточной электроники СО РАН, пр. Академический 2/3,634055, г. Томск, Россия

Теоретически обоснована и экспериментально подтверждена возможность сепарации малых проводящих немагнитных частиц в сепараторе с импульсным бегущим магнитным полем. Обоснована возможность построения технологии сепарации мелкого и тонкого золота из россыпных и техногенных месторождений на базе предложенного метода.

Обогащение, импульсное магнитное поле, вихревые токи, россыпные месторождения

введение

Основные потери россыпного золота происходят на операциях первичного обогащения, в которых теряется главным образом тонкое, пластинчатое и пылевидное золото с размером частиц от миллиметра до нескольких микрон. Из россыпных месторождений сегодня в России добывается чуть менее 45 % золота [1]. Длительная эксплуатация и интенсивная добыча при почти полном отсутствии геолого-разведочных работ привели к тому, что в россыпях значительно снизилась доля крупного легко улавливаемого золота. В ближайшие годы все наиболее крупные, богатые и легкодоступные россыпные месторождения будут отработаны полностью. Останутся труднообогатимые месторождения с мелким и тонким золотом, бедные и техногенные россыпи. Однако качественное обогащение таких россыпей возможно только с помощью новой технологии [2], которая должна быть экологически чистой, простой, не очень разветвленной. По оценкам специалистов применение такой технологии может быть выгодным, если даже из бедных руд и песков будет извлекаться всего 75 % свободного металла [3].

Россыпные месторождения являются естественными смесями минералов, в которых частицы свободного металла отличаются от вмещающих пород высокой электропроводностью. Если на такую смесь подействовать переменным магнитным полем, то во всех частицах минералов будут индуцироваться вихревые токи Фуко. В металлических частицах, благодаря высокой проводимости, вихревые токи станут значительно сильнее токов во вмещающих породах, чаще всего являющихся достаточно хорошими изоляторами. Токи Фуко взаимодействуют с внешним магнитным полем так, что проводящее тело выталкивается из области усиленного поля. В 110 результате такого взаимодействия металлическая частица приобретает некоторый импульс, который позволяет отделить проводящие частицы от непроводящих. Подобрав форму, амплитуду, скорость изменения, частоту и топологию магнитного поля, можно получить пространственное разделение частиц металла и вмещающих пород [4, 5]. Именно данная идея лежит в основе электродинамического способа разделения минералов. Этот метод успешно работает для сравнительно больших предметов: электродинамической штамповки изделий или магнитомеханических сепараторов проводящих частиц с вращающимися постоянными магнитами.

Если размер частиц очень мал (десятые и сотые доли миллиметра), то существующие устройства становятся неэффективными, так как градиенты магнитного давления сообщают мелким частицам недостаточные для сепарации импульсы. Поэтому разработанные к настоящему времени аппараты электродинамического обогащения чаще всего используются для сортировки крупной стружки и лома цветных металлов [4]. Метод используется и для магнитной сепарации сыпучих минералов, но создаваемое движущимися постоянными магнитами или электромагнитами поле позволяет извлекать только сравнительно крупные частицы [5]. Проблема заключается в том, что сила, действующая на проводящую частицу, помещенную в градиентное магнитное поле, зависит от отношения размера частицы R к толщине скин-слоя λ . Если размер частицы меньше толщины скин-слоя, то механический импульс, приобретаемый частицей, оказывается очень малым, а конечная скорость частицы стремительно падает при уменьшении отношения R/λ . Для золота толщина скин-слоя 1 мм будет достигаться при частоте поля около 20 кГц, а для уменьшения скин-слоя в 2 раза необходимо увеличение частоты поля в 4 раза. Создание же магнитных полей высокой напряженности — сложная техническая задача и требует большого расхода энергии, поэтому минимальный размер частиц, которые могут быть выделены указанными методами, составляет около 0.5 мм.

Обойти многие трудности, непреодолимые как для обычных, так и сверхпроводящих электромагнитов, позволяет техника импульсных магнитных полей. Импульсные магнитные системы потребляют электроэнергии значительно меньше, поэтому их проще охлаждать. Обмотки импульсных индукторов можно изготовить из тонкого проводника и получать в их рабочей зоне поля с характеристиками, недостижимыми для постоянных магнитов, обычных и сверхпроводящих электромагнитов.

Цель настоящее работы — теоретическое обоснование и экспериментальное подтверждение возможности электродинамической сепарации проводящих частиц с размерами порядка 0.1 мм по импульсу за счет воздействия на них внешнего неоднородного магнитного поля, возбуждаемого импульсными токами в катушках.

1. ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ МЕТОДА

Известно, что во внешнем переменном магнитном поле B(t) проводящая частица за счет генерации в ней индукционных токов Фуко приобретает магнитный момент $\mu \sim -\partial B/\partial t$, на который во внешнем слабонеоднородном магнитном поле действует сила F(t) [6]:

$$\boldsymbol{F}(t) = (\boldsymbol{\mu}(t) \cdot \nabla) \boldsymbol{B}(t) . \tag{1}$$

Интегрируя силу, можно найти импульс, который приобретет проводящая частица за время действия переменного поля.

Оценим скорость, которую получит в нестационарном и неоднородном магнитном поле проводящая частица цилиндрической формы с радиусом R и высотой H, ось симметрии которой ориентирована вдоль вектора магнитной индукции (примем далее это направление за ось Ox). Поскольку частица предполагается малой по сравнению с толщиной скин-слоя, магнитным полем токов Фуко можно пренебречь и магнитный момент частицы, будет

$$\boldsymbol{\mu} = \int_{0}^{R} \pi r^{2} \cdot dI(r) = \int_{0}^{R} \pi r^{2} \cdot \frac{1}{2} \sigma r \left(-\frac{\partial \boldsymbol{B}}{\partial t} \right) H dr = -\frac{1}{8} \pi \sigma R^{4} H \frac{\partial \boldsymbol{B}}{\partial t}, \qquad (2)$$

где σ — удельная проводимость металла. Подставляя (2) в (1), запишем одномерное уравнение движения частицы

$$(\rho \cdot \pi R^2 H) \frac{dv}{dt} = -\frac{1}{8} \pi \sigma R^4 H \left(\frac{\partial \mathbf{B}}{\partial t} \cdot \frac{\partial \mathbf{B}}{\partial x} \right), \tag{3}$$

где ρ — плотность металла. Интегрируя (3) в предположении столь короткого времени импульсного магнитного поля, что частица за время этого импульса не успевает заметно переместиться в пространстве вдоль оси Ox, получим

$$\mathbf{v}(t) = \mathbf{v}(0) - \frac{\sigma R^2}{16\rho} \left\{ \frac{\partial}{\partial x} (B(t))^2 - \left(\frac{\partial B}{\partial x}\right)^2_{t=0} \right\}.$$
 (4)

Характерный масштаб скорости частицы из (4) можно оценить на уровне

$$v_{\max} \cong \frac{\sigma}{16\rho L} (B_{\max}R)^2, \qquad (5)$$

где символом *L* обозначен характерный масштаб неоднородности магнитного поля, который на практике может быть реализован в миллиметровом диапазоне. Возьмем для примера параметры медной частицы $\sigma \cong 6 \cdot 10^7 (\text{Om} \cdot \text{m})^{-1}$, $\rho \cong 9 \cdot 10^3 \text{ кг/m}^3$, а максимальную магнитную индукцию, которую можно технически реализовать в импульсном режиме, оценим на уровне $B_{\text{max}} \sim 5$ Тл. Тогда при $L \sim 2$ мм получим для частиц с размерами $R \cong 0.1$ мм максимальную скорость на уровне $v_{\text{max}} \cong 5$ см/с. Эта величина вполне способна обеспечить надежную селекцию проводящих частиц по скоростям относительно не проводящих.

Но, к сожалению, формула (5) демонстрирует не конечную, а максимальную скорость движения частицы при приложении импульса B(t). Если рассматривать движение частицы в поле одной катушки, по которой протекает импульс тока, имеющий форму одного периода синусоиды ($J = J_0 \sin \omega t$), то для представленных параметров частицы окажется, что зависимость скорости от времени в течение импульса будет иметь вид, представленный на рис. 1, откуда видно, что за время действия импульса (один период синусоиды тока катушки) частица успевает дважды набрать и потерять направленную скорость порядка 5 см/с. При спаде магнитной индукции к концу импульса до нуля скорость частицы также упадет практически до нуля, поскольку со сменой знака производной в (2) направление магнитного момента частицы также меняет знак и ускоренная при нарастании поля частица будет заторможена при его падении. В результате у частицы останется очень небольшая скорость, обусловленная конечным смещением частицы в течение импульса тока в катушке. Поэтому сообщить значительный импульс малой частице с помощью единственной индукционной катушки не удастся. Увеличение амплитуды тока в рассмотренной конфигурации магнитного поля также не приведет к желаемому результату, так как частица фактически теряет всю набранную за четверть периода скорость. Одно из решений — увеличение длительности импульса тока настолько, чтобы за время ускоряющей части его частица существенно изменила свое положение, но тогда значительно повысятся потери энергии в обмотке катушки и подводящих проводниках. Задание несимметричных импульсов в реальности ограничено затухающими гармоническими сигналами вида $\sin(\tau)\exp(-\alpha\tau)$, которые знакопеременны и одновременно приводят к уменьшению полезной амплитуды скорости за счет снижения магнитного поля со временем. Таким образом, система с одной магнитной катушкой не позволяет эффективно воздействовать на субмиллиметровые проводящие частицы, так как их конечной скорости (порядка десятых долей миллиметра в секунду) просто недостаточно для сепарации.

Рис.1. Результаты расчетов изменения скорости частицы радиусом 0.1 мм от времени в магнитном поле одной катушки за один период синусоидального тока

Ситуация может быть существенно изменена, если формировать импульсное магнитное поле с помощью двух соосно расположенных катушек, в которых импульсы тока сдвинуты по времени так, чтобы в месте нахождения частицы формировалось "бегущее магнитное поле". Предлагаемый подход показан на рис. 2. В катушках K_1 и K_2 протекают импульсы тока $I_1(t)$ и $I_2(t)$, причем импульс тока в катушке K_2 задержан относительно импульса тока в катушке K_1 . При определенном временном сдвиге между импульсами смена знака производной магнитной индукции в (2) будет одновременно сопровождаться сменой знака градиента индукции в (1). Сила (1), действующая на частицу, не будет менять знак, пока не закончатся оба импульса тока. У частицы к этому моменту сохранится довольно высокая скорость движения, оценка которой по порядку величины определяется выражением (5).

Рис. 2. Схема электродинамического метода ускорения проводящей частицы в системе с импульсным бегущим магнитным полем, сформированным токами двух плоских катушек

Авторами проведено интегрирование уравнения движения (3) для медной частицы с теми же параметрами, но в нестационарном поле двух катушек. Через две одинаковые плоские катушки, состоящие из 20 витков (радиус внутреннего витка 2.5 мм и внешнего 11 мм) и отстоящие друг от друга на 6 мм, протекают импульсы тока в форме одного периода синусоиды продолжительностью T = 250 мкс и амплитудой I = 1.5 кА. При данных параметрах индукция магнитного поля в месте нахождения частицы достигает 5 Тл.

На рис. 3 приведен результат этого расчета, из которого видно, как меняется во времени скорость частицы. К концу второго импульса максимальная скорость частицы $v_{\text{max}} \cong 3$ см/с. Если сдвиг между импульсами тока T_0 варьировать, то v_{max} будет меняться, и оптимальный режим наблюдается при сдвиге между импульсами $T_0 \approx T/3$.

Рис. 3 Временные зависимости скорости частицы в импульсном бегущем магнитном поле двух катушек для различных времен задержек между токами в первой и второй катушках

Таким образом, расчеты показывают техническую возможность создания устройства для непрерывной электродинамической сепарации проводящих частиц в импульсно-периодическом магнитном поле. При частоте следования килоамперных импульсов тока на уровне f = 100 Гц средняя мощность генератора тока должна составлять несколько киловатт, что, безусловно, реализуемо на современном уровне развития силовой электроники.

2. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА МЕТОДА

Проверка теоретических предположений осуществлена на установке, блок-схема которой приведена на рис. 4. Катушки K_1 и K_2 имеют по 24 витка и сделаны из медной шины толщиной 0.2 мм и шириной 5 мм. Межвитковая изоляция выполнена из полиамидной пленки толщиной 50 мкм. Внутренний диаметр катушек 5 мм, внешний — 24 мм, их индуктивность составляет 12 мкГн. Катушки жестко закреплены на расстоянии 6 мм друг от друга. Импульсы тока в них, близкие по форме к одному периоду синусоиды, формируются с помощью LC-цепи, включающей накопительную емкость C_1 (C_2) номиналом 80 мкФ, защитную индуктивность L_1 (L_2) номиналом 7 мкГн, и катушку K_1 (K_2). Коммутация цепи осуществляется быстрыми импульсными тиристорами T_1 (T_2) марки ТБИ243-500. Через тиристоры протекает первый полупериод импульса тока, при смене направления тока во втором полупериоде открываются 114

диоды $D_1(D_2)$ марки ДЧ143-500, и вторая половина импульса протекает через них. Зарядка накопительных емкостей осуществлялась зарядными устройствами ЗУ1 и ЗУ2 до напряжений от 500 до 2000 В, что обеспечивало получение импульсов тока в катушках амплитудой до 2 кА. Импеданс цепи разряда составлял 1 Ом, поэтому амплитуда тока импульса численно равнялась зарядному напряжению. Система могла генерировать как одиночные импульсы, так и с частотой повторения до 100 Гц, но в описываемых экспериментах использовались только одиночные импульсы.

Рис. 4. Блок-схема экспериментальной установки

В качестве модельных частиц использовались кусочки медного провода диаметром от 0.05 до 0.4 мм. Длина частиц примерно равнялась их диаметру. Частица подавалась в пространство между катушками из системы сброса путем открытия электромагнитного затвора выходного отверстия. Через время задержки τ_1 , равное пролету частицы от выходного отверстия системы сброса до центра катушек и составляющее около 40 мкс, запускался тиристор Т₁ и формировался импульс тока в первой катушке. Через время задержки τ_2 относительно момента запуска первого тиристора запускался тиристор Т2 и формировался импульс тока во второй катушке. Время задержки τ_2 могло изменяться от 0 до 100 мкс и было одним из параметров эксперимента. Генерация двух смещенных импульсов тока в катушках приводила к формированию импульсного бегущего магнитного поля между катушками, направленного от первой ко второй. Падающие частицы попадали на приемную плоскость, расположенную ниже на 25 см от центра катушек и представляющую собой покрытую слоем масла поверхность с миллиметровой сеткой. Слой масла предотвращал отскок падающих частиц, позволяя фиксировать истинное место падения частицы. Измерением расстояния L от точки вертикального падения частиц в отсутствии поля до точки падения частиц в присутствии поля определялась горизонтальная скорость, приобретенная частицей в сепараторе, в приближении ее постоянства во время падения, которое также бралось постоянным в приближении равноускоренного движения частицы в поле тяготения и равным 0.22 с.

Следует отметить, что частицы имели сложную форму и попадали в зону воздействия импульса. Кроме того, момент достижения частицей точки между центрами катушек мог варьироваться в пределах нескольких миллисекунд из-за разброса момента их выпадения из выходного отверстия системы сброса. Указанные особенности приводили к тому, что частица подвергалась воздействию импульса бегущего магнитного поля не обязательно точно в точке между центрами катушек, а в некоторой окрестности около этой точки. Как следствие, частица приобретала различные скорости, и на приемной плоскости формировалось распределение частиц, следствием которого был их разброс по рассчитанным приобретенным скоростям.

На рис. 5 представлены зависимости экспериментально измеренной и теоретически вычисленной скорости, приобретенной частицей от ее диаметра, для двух значений зарядного напряжения. Можно видеть, что в пределах изменения экспериментальных параметров не зафиксировано отклонение только частиц диаметром 0.05 мм, т. е. их отклонение оказалось меньше достоверно измеряемой величины. Уже частицы диаметром 0.1 мм приобретают скорость 1-2 см/с, что позволяет говорить о возможности сепарации таких частиц в импульсном бегущем магнитном поле, формируемом сдвинутыми по фазе токами двух катушек. В области диаметров менее 0.2 мм наблюдается приемлемое согласие экспериментальных данных с расчетными величинами, полученными для тех же условий. Заниженные экспериментальные значения скоростей, полученные при диаметрах частиц более 0.2 мм, связаны с особенностями конструкции сепаратора: смещение на расстояние $L \approx 2$ см предельное, поскольку при больших углах отклонения частицы от вертикали она способна задевать элементы конструкции сепаратора и изменять направление движения. Это проявляется в увеличении разброса частиц на приемной поверхности и занижении среднего отклонения.

Рис. 5. Зависимость экспериментально измеренной и теоретически вычисленной скорости, приобретенной частицей, от ее диаметра для двух значений зарядного напряжения: *I* — 1500 В; *2* — 2000 В. Экспериментальные данные представлены графиками с маркерами

На рис. 6 показана экспериментальная зависимость скорости частицы от задержки импульса второй катушки относительно импульса первой. Виден эффект бегущего поля: при одновременном включении катушек скорость частиц близка к нулю, максимальная скорость достигается при задержке включения второй катушки около 50 мкс, что соответствует примерно 0.2 от периода колебаний, как это и было предсказано теоретическими расчетами (см. рис. 3).

Как следует из уравнения (5), скорость, приобретенная частицей, обратно пропорциональна квадрату ее размера, но прямо пропорциональна квадрату поля (т. е. квадрату тока в катушках и квадрату зарядного напряжения). Следовательно, для сохранения постоянной скорости частицы, при уменьшении ее размера, необходимо пропорционально увеличивать ток в катушках.

Важно отметить, что параметры, использованные в эксперименте, не являются предельными для современных силовых полупроводниковых приборов, возможно кратное увеличение рабочих напряжений и токов. Таким образом, в импульсном бегущем магнитном поле, формируемом сдвинутыми по фазе токами двух катушек, вполне возможно ускорить частицы с размерами 50 мкм и менее до скоростей около 1–2 см/с.

Рис. 6. Экспериментальная зависимость скорости частицы от задержки импульса второй катушки относительно импульса первой. Зарядное напряжение 1500 В; *I* — диаметр частиц 0.4 мм, *2* — 0.25 мм

выводы

Теоретически обоснована и экспериментально подтверждена возможность сепарации малых частиц (порядка 0.1 мм) в импульсном бегущем магнитном поле, формируемом сдвинутыми по фазе токами двух катушек.

Предложенный метод может быть использован для создания технологий извлечения мелкого и тонкого золота из россыпных и техногенных месторождений.

СПИСОК ЛИТЕРАТУРЫ

- 1. Брайко В. Н., Иванов В. Н. Проблемы развития золотодобычи в России // Горный журнал. 2006. № 10.
- 2. Макаров А. Б. Техногенные месторождения минерального сырья // Соросовский образовательный журнал. — 2000. — Т. 6. — № 8.
- **3. Кармазин В. В., Кармазин В. И.** Магнитные электрические и специальные методы обогащения полезных ископаемых. М.: Изд-во МГГУ, 2005.
- **4.** Бочкарев Г. Р., Ростовцев В. И., Воблый П. Д. и др. Высокоградиентный магнитный сепаратор для обогащения слабомагнитных руд // ФТПРПИ. 2004. № 2.
- **5.** Физика и техника мощных импульсных систем // Сб. статей под ред. Е. П. Велихова. М.: Энергоатомиздат, 1987.
- **6.** Тамм И. Е. Основы теории электричества. М.; Л.: Государственное издательство технико-теоретической литературы, 1946.

Поступила в редакцию 16/Х 2007