УДК 544.6.076.2

СРЕДНЕТЕМПЕРАТУРНЫЕ ТВЕРДООКСИДНЫЕ ТОПЛИВНЫЕ ЭЛЕМЕНТЫ С ТОНКОПЛЕНОЧНЫМ ZrO₂ : Y₂O₃ ЭЛЕКТРОЛИТОМ

© 2011 г. А. А. Соловьев¹, Н. С. Сочугов, А. В. Шипилова, К. Б. Ефимова^{*}, А. Е. Тумашевская^{*}

Учреждение Российской академии наук Институт сильноточной электроники СО РАН 634055, Томск, просп. Академический, 2/3, Россия *Томский политехнический университет 634050, Томск, просп. Ленина, 30, Россия Поступила в редакцию 17.06.2010 г.

В статье представлены результаты исследования среднетемпературных твердооксидных топливных элементов (**ТОТЭ**) с тонкопленочным $ZrO_2-Y_2O_3$ (**YSZ**) электролитом. Топливная ячейка такого элемента представляет собой несущий Ni–YSZ-анод, YSZ-электролит толщиной 3–5 мкм, сформированный вакуумными ионно-плазменными методами, и LaSrMnO₃-катод. Показано, что использование комбинированного метода осаждения YSZ-электролита, включающего в себя магнетронное нанесение подслоя толщиной 0.5–1.5 мкм и его импульсную электронно-пучковую обработку, позволяет формировать плотную наноструктурированную пленку электролита и снизить рабочую температуру ТОТЭ как вследствие уменьшения омического сопротивления твердого электролита, так и фарадеевского сопротивления переносу заряда. Топливные ячейки ТОТЭ были исследованы методами вольтамперометрии и импедансной спектроскопии. Максимальная плотность мощности исследуемых ТОТЭ при использовании воздуха в качестве окислителя составила 250 и 600 мВт/см⁻² при температурах 650 и 800°С соответственно.

Ключевые слова: среднетемпературный твердооксидный топливный элемент, тонкопленочный электролит, магнетронное распыление, импульсная электронная обработка, диоксид циркония стабилизированный иттрием, импедансная спектроскопия

введение

Твердооксидные топливные элементы (ТОТЭ) представляют собой привлекательные электрохимические генераторы, эффективно преобразующие химическую энергию взаимодействия водорода с кислородом в электрическую при минимальном воздействии на окружающую среду. Однако высокие рабочие температуры ТОТЭ (800-1000°С) обуславливают две основные проблемы, характерные для данного типа топливных элементов. Во-первых, для выхода на рабочую температуру ТОТЭ приходится нагревать с небольшой скоростью (менее 300°С ч⁻¹) во избежание разрушения керамических элементов конструкции вследствие разницы их коэффициентов термического расширения (КТР). Во-вторых, высокая температура приводит к окислению или коррозии большинства металлов, диффузии материалов электродов в электролит с образованием непроводящих соединений, возникновению механических напряжений вследствие различных КТР.

Для промышленного использования ТОТЭ их стоимость, а также механическая надежность и

электрохимические характеристики должны быть улучшены, что может быть достигнуто путем снижения рабочей температуры ТОТЭ. Поэтому проводятся интенсивные исследования, направленные на снижение сопротивления электролита путем замены ZrO_2 , стабилизированного Y_2O_3 (YSZ), другими материалами, например, оксидами самария или гадолиния, допированными церием и имеющими более высокую ионную проводимость [1–3], или уменьшения толщины электролита для снижения омических потерь [4].

В настоящее время ТОТЭ, в основном, выполняются на основе трубчатых или планарных топливных ячеек. Планарные ТОТЭ более просты в изготовлении, а их модификации с несущим анодом позволяют генерировать высокие плотности мощности вследствие низкого омического сопротивления основы [5]. Существует множество различных способов изготовления YSZ-электролита. Например, широкое распространение получили методы шликерного литья [6], трафаретной печати [7], электрофоретического осаждения [8], покрытие окунанием [9] и метод полусухого прессования [10]. Однако большинство из вышеперечисленных методов не позволяет наносить слои толщиной в единицы микрон. Для нанесения тонких пленок

¹ Адрес автора для переписки: andrewsol@mail.ru (А.А. Соловьев).

YSZ традиционно используются такие методы как высокочастотное магнетронное распыление, зольгель процесс, импульсное лазерное испарение, химическое газофазное осаждение и магнетронное распыление на постоянном токе. Магнетронное распыление в отличие от других методов позволяет реализовывать однородное и изотропное осаждение покрытий, характеризуется стабильностью процесса, независимой регулировкой параметров осаждения и возможностью осаждения покрытий на подложки большой площади.

При реализации конструкции ТОТЭ с несущим тонкопленочный газонепроницаемый анолом. электролит (толщиной порядка 1-3 мкм) необходимо получить на поверхности пористой подложки. Последняя для снижения концентрационных потерь обычно имеет пористость порядка 40% и размеры пор от сотен нанометров до десяти микрометров. Поэтому очевидно, что для достижения высокой газонепроницаемости слоя $ZrO_2 - Y_2O_3$ (YSZ) необходимо проводить либо предварительную поверхностную модификацию пористых анодов ТОТЭ с целью создания модифицированных и интерфейсных слоев на их поверхности, либо модифицировать тонкий слой YSZ с целью повышения его газоплотности [11-13].

В данной работе рассмотрены характеристики среднетемпературного ТОТЭ, работающего при температуре ниже 800°С, который состоит из керметного Ni/YSZ-анода, нанесенного методом магнетронного распыления YSZ-электролита, и "намазного" LaSrMnO₃-катода. Важной особенностью предложенного нами метода изготовления ТОТЭ является использование на промежуточной стадии нанесения электролита импульсной электроннопучковой обработки. В результате такой обработки облучаемые слои приобретают нанокристаллическую структуру, обладающую уникальными свойствами [14, 15]. Топливные ячейки ТОТЭ были исследованы в диапазоне температур от 600 до 800°С методами вольтамперометрии и импедансной спектроскопии. С помощью сканирующей электронной микроскопии было исследовано влияние электронно-пучковой обработки на структуру и морфологию поверхности YSZ-электролита. Проведен анализ зависимости электрохимических характеристик топливных ячеек от условий нанесения слоев электролита, температуры и расходов рабочих газов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Изготовление топливных ячеек

Исходным материалом для изготовления пористых анодов была смесь оксида никеля со стабилизированным иттрием оксидом циркония в виде ленты производства ESL ElectroScience, США. Лента изготавливалась методом шликерного литья, а в состав суспензии входили порошки оксида никеля

ЭЛЕКТРОХИМИЯ том 47 № 4 2011

и YSZ, термопластичная связка и поверхностно-активное вещество. До высокотемпературного спекания анодные образцы имели диаметр 24 мм и толщину около 550 мкм. Спекание NiO/YSZ-образцов осуществлялось в воздушной атмосфере при температуре 1450°С и с двухчасовой изотермической выдержкой. После спекания диаметр образцов уменьшался до 20 мм. Анодные подложки представляли собой двухслойную конструкцию, состоящую из основного (толщина 0.5 мм, размер пор 1.5–2 мкм) и функционального (толщина 15 мкм, размер пор ~0.6 мкм) слоев. Функциональный слой, прилегающий к электролиту, играет роль электрохимически активного слоя и состоит из небольших гранул Ni и YSZ для увеличения трехфазной границы и уменьшения поляризационных потерь. Основной слой играет роль токособирающего и газораспределительного, для чего имеет размер пор, достаточный для транспортировки топлива к электролиту и отвода продуктов реакции. Газопроницаемость (G) такого двухслойного анода равняется $\sim 6.3 \times 10^{-5}$ моль м⁻² с Па.

Катод формировался методом нанесения и высушивания $La_{0.80}Sr_{0.20}MnO_{3-x}$ пасты производства NexTech Materials, Ltd., США. Вообще $La_xSr_{1-x}MnO_3$ (LSM) является наиболее популярным материалом при производстве ТОТЭ вследствие его хорошей совместимости с YSZ.

Все исследуемые топливные ячейки, представленные в табл. 1, имеют одинаковые аноды и катоды, а отличаются толщиной и методом формирования электролита. Для нанесения однослойного тонкопленочного YSZ-электролита на образцы 1, 2 и 3 использовался метод импульсного реактивного магнетронного распыления $Zr_{0.86}Y_{0.14}$ -катода. Толщина слоев электролита данных образцов составляла 3, 5 и 9 мкм соответственно. Нанесение YSZ-электролита проводилось в Ar/O₂ атмосфере при давлении 0.2–0.3 Па на нагретые до температуры 600°С подложки. Использовался импульсный режим работы магнетрона с частотой 50 кГц и мощностью разряда 1.5 кВт. Скорость нанесения пленок YSZ составляла 2.5 мкм ч⁻¹.

Топливные ячейки 4–7 были изготовлены с двухслойным электролитом. На первом этапе на пористый анод наносился подслой YSZ толщиной 0.35, 1, 1.5 и 2 мкм соответственно. Затем образцы обрабатывались импульсным электронным пучком, который имел следующие характеристики: энергию электронов $E_e = 10-12$ кэВ, ток пучка ~15 кА, плотность энергии пучка $E_s = 0.8 \text{ Дж/см}^2$, длительность импульса – 2.5 мкс, количество импульсов воздействия N = 2-3. Скорость закалки из расплава на поверхности достигала ~ 10^{10} K с⁻¹. Рабочее давление в камере находилось на уровне 5.07 × 10^{-6} Па. После электронно-пучковой обработки (ЭПО) осаждался второй слой электролита толщиной ~2.5 мкм и на-

№ топливной ячейки	Толщина однослойного	Толщина двухслойного	<i>U</i> _{хх} , мВ	<i>P</i> , мВт см ⁻²	
	YSZ-электролита, мкм	подслой	основной слой	при 650°С	при 650°С
1	3	—	—	0.75	60
2	5	—	—	0.85	60
3	9	—	—	—	—
4	—	0.35	2.5	0.92	155
5	-	1	2.5	1.02	125
6	-	1.5	2.5	1.03	210
7	_	2	2.5	1.02	250

Таблица 1. Характеристика топливных ячеек с тонкопленочным YSZ-электролитом

носился LaSrMnO₃-катод. Катод высушивался при температуре 125° C, а его спекание происходило уже в процессе исследования топливных ячеек при рабочих температурах 600–800°C. Более подробно эксперименты по ЭПО пористых анодов и YSZ-подслоя описаны в [16].

Исследование топливных ячеек

На рис. 1 представлена схема устройства Probo-StatTM (NorECs, Норвегия) для исследования характеристик единичных топливных ячеек ТОТЭ. Исследуемая ячейка располагалась на трубе из оксида алюминия диаметром 20 мм, а для ее уплотнения

Рис. 1. Схема установки для измерения электрохимических характеристик ТОТЭ: 1 - Pt-сетка, 2 - катод, 3 - анод, 4 - печь, 5 - термопара, 6 - Pt-провода, $7 - \text{труба из Al}_2\text{O}_3$ для установки топливной ячейки, 8 - уплотнение, 9 - электролит.

использовалось стеклянное кольцо. Как для анода, так и для катода в качестве токовых коллекторов использовались Pt-сетки диаметром 15 мм. К каждой из них подходило по два платиновых провода, используемых для измерения тока и напряжения. Образец нагревался до рабочей температуры со скоростью 300 град ч⁻¹. Увлажненный водород и воздух (кислород) подавались к топливной ячейке с расходами 20-80 мл мин⁻¹ и 50-250 мл мин⁻¹ соответственно. Характеристики топливных ячеек исследовались методами вольтамперометрии и импедансной спектроскопии с использованием приборов: потенциостат P-150S и импедансметр Z-500P (Элинс, Россия). Импеданс измеряли в диапазоне частот $0.2-5 \times 10^5$ Гц при амплитуде переменного сигнала 10 мВ в условиях разомкнутой цепи и под нагрузкой. Полученные спектры импеданса анализировали с помощью программы Z-View 2.3f (Scribner Associates Inc., США) методом эквивалентных схем.

Исследование микроструктуры образцов

После исследования электрохимических характеристик топливные ячейки анализировались посредством сканирующего электронного микроскопа Philips SEM 515. Действительная толщина компонентов топливных ячеек также определялась с помощью электронной микроскопии.

Измерение газопроницаемости

Газопроницаемость слоев электролита по азоту исследовалась в устройстве собственного производства, представляющем собой две герметизированных полости, разделенные испытываемым образцом. Каждая полость снабжена газоподводящими трубками, через которые осуществляется наполнение азотом напорной полости и отвод газа, продиф-

Рис. 2. Изображения поперечного сечения образцов со структурой: а – Ni-YSZ/однослойный YSZ-электролит, б – Ni-YSZ/двухслойный YSZ-электролит, в, г – поверхности однослойного (в) и двухслойного (г) YSZ-электролита.

фундировавшего в измерительную полость. Количество прошедшего через образец азота измерялось волюмометрическим методом (измерением объема прошедшего газа при постоянном давлении). Продиффундировавший через образец газ поступал в капилляр постоянного сечения, и по перемещению капли жидкости в капилляре измерялось количество поступившего газа во времени.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микроструктура топливных ячеек с тонкопленочным YSZ-электролитом

Изображения поперечного сечения структур анод—однослойный электролит и анод—двухслойный электролит, а также поверхности электролита приведены на рис. 2. Видно, что YSZ-покрытия, наносимые методом магнетронного распыления на пористую подложку, имеют столбчатую структуру (рис. 2а). Но, несмотря на это, пленки являются достаточно плотными и имеют хорошую адгезию к аноду. Газопроницаемость образца 2 с электролитом толщиной 5 мкм составила 2.1 × × 10⁻⁷ моль м⁻² с⁻¹ Па⁻¹, что в 300 раз меньше, чем газопроницаемость исходной анодной подложки (6.25 × 10⁻⁵ моль м⁻² с⁻¹ Па⁻¹).

На рис. 26 показано поперечное сечение образца 6 с двухслойным электролитом, формирование которого было начато с нанесения YSZ-подслоя тол-

ЭЛЕКТРОХИМИЯ том 47 № 4 2011

щиной 1.5 мкм и последующей обработки электронным пучком. В результате рекристаллизации подслоя, вызванной высокоскоростным нагревом и охлаждением, произошла трансформация столбчатой структуры электролита в более плотную структуру, которая также сопровождалась сглаживанием поверхности. Поэтому рост и формирование второго слоя электролита при нанесении его на обработанный подслой начинается не на вершинах гранул Ni и YSZ, составляющих пористый анод, что неизбежно приводит к образованию пор в покрытии, а на гладкой поверхности. Как известно, состояние поверхности играет большую роль на начальном этапе формирования покрытий и во многом определяет их будущую структуру. Вследствие этого второй слой электролита имеет плотную беспористую структуру, повторяющую структуру обработанного подслоя, а граница между двумя слоями электролита абсолютно не выражена. Газопроницаемость двухслойного электролита, полученного с применением электронно-пучковой обработки, в два раза меньше, чем у однослойного электролита такой же толщины и равняется 1.01×10^{-7} моль м⁻² с⁻¹ Па⁻¹.

Вольт-амперные характеристики топливных ячеек с тонкопленочным YSZ-электролитом

Вольт-амперные и мощностные характеристики образцов с однослойным (топливная ячейка 2) и двухслойным (топливная ячейка 6) электролитом

Рис. 3. Вольт-амперные мощностные характеристики топливных ячеек 2 (а) и 6 (б) при различных температурах, °C: 1-550, 2-600, 3-650, 4-700, 5-750, 6-800. H₂: 40 мл мин⁻¹, воздух: 150 мл мин⁻¹.

представлены на рис. 3. Напряжение холостого хода U_{xx} данных образцов при температуре 600–800°С равнялось 840–960 и 950–1060 мВ соответственно. Значения U_{xx} образцов с двухслойным электролитом ближе к теоретически возможному на воздухе (1080 мВ). Это говорит о меньшей газопроницаемости двухслойного электролита, что коррелирует как с непосредственным измерением газопроницаемости, так и со структурой электролита, полученной электронной микроскопией.

Вольт-амперные характеристики (ВАХ) обоих элементов, представленные на рис. 3, имеют нели-

нейный характер. Первый "быстрый" участок ВАХ (от 0 до 40—400 мА в зависимости от температуры) связан с активационными потерями, вызванными затратой энергии для реализации ряда процессов. К ним относится газофазная диффузия регентов к электродам, адсорбция, диссоциация и ионизация, поверхностная диффузия к электрохимически активным центрам, проникновение ионов в электролит и электроды.

При больших плотностях тока (более 1 мА см⁻²) в топливной ячейке 6 падение напряжения ускоряется, что обусловлено возникновением концентрационных потерь. Этот вид поляризации вызван тем, что концентрация частиц в зоне реакции при прохождении тока отличается от концентрации реагентов в объеме анода, поскольку подвод или отвод веществ не успевает за их потреблением на электроде.

При температуре 800°С плотность мощности, генерируемой топливными ячейками 2 и 6, отличается в два раза и составляет 300 и 600 мВт см⁻² соответственно при потенциале 400 мВ. При уменьшении температуры до 600°С разница между значениями плотности мощности данных элементов увеличивается до четырех раз. По-видимому, это обусловлено меньшим сопротивлением двухслойного электролита и говорит о перспективности ЭПО в комбинации с магнетронным распылением как метода изготовления среднетемпературных ТОТЭ.

Импедансная спектроскопия топливных ячеек с тонкопленочным YSZ-электролитом

Спектры импеданса топливных ячеек 2 и 4, измеренные в режиме холостого хода при температурах 600, 650 и 700°С, показаны на рис. 4. Они описываются двумя частично перекрывающимися полуокружностями малого радиуса на высоких частотах и большого радиуса на низких частотах. Высокочастотная полуокружность выражена слабо, но с уменьшением температуры ее проявление становится более очевидным. Согласно общей теории электрохимической импедансометрии, точка пересечения высокочастотной области годографа с действительной осью импеданса соответствует омическому сопротивлению топливной ячейки (R_{F}), которое включает в себя сопротивление электролита, двух электродов, токовых коллекторов и соединяющих проводов. Точка пересечения низкочастотной области годографа с действительной осью импеданса определяет полное сопротивление топливной ячейки ($R_E + R_p$), которое состоит из омического сопротивления ячейки, сопротивления, обусловленного концентрационной поляризацией (сопротивления массопереносу), поляризационного сопротивления, обусловленного переносом заряда (R_{ct}^{eff}) ,

и других типов поляризационного сопротивления, возникающих, например, из-за процесса адсорбции и т.д. Полное поляризационное сопротивление электродов (R_p), таким образом, также может быть определено из спектров импеданса.

Для топливной ячейки 2 омическое сопротивление увеличивается с 0.25 до 1.8 Ом при снижении температуры от 800 до 600°С. У топливных ячеек 4, 6 и 7 в том же температурном диапазоне R_E с уменьшением температуры увеличивается с 0.27 до 0.92, 0.42 и 0.31 Ом соответственно. Таким образом, при температуре 800°С омическое сопротивление ис-

Рис. 4. а – Спектры импеданса топливных ячеек 2 (*1–3*) и 4 (*1'–3'*), измеренные при температурах, °С: *1*, *1'* – 600; 2, 2' – 650; 3, 3' – 700; б – увеличенная высокочастотная область этих спектров импеданса. H_2 : 40 мл мин⁻¹, воздух: 150 мл мин⁻¹.

следуемых образцов примерно одинаково и равно 0.25-0.27 Ом, но при уменьшении температуры образцы с двухслойным электролитом имеют существенно меньшее омическое сопротивление. При этом разница между R_E топливных ячеек с однослойным и двухслойным электролитами при уменьшении температуры увеличивается. Поскольку полученные образцы отличаются лишь методом изготовления и толщиной электролита, а омическое сопротивление электродов, токовых коллекторов и соединительных проводов было у всех одинаковым, то изменения значений R_F напрямую связаны с изменениями проводимости YSZ-электролита. Меньшее сопротивление электролита, подвергнутого ЭПО, может быть связано с возможностью с помощью импульсного плавления формировать слои с ультрамелкозернистой и нанокристаллической структурой [17].

Из рис. 4 видно, что топливная ячейка 4 с двухслойным электролитом не только имеет меньшее омическое сопротивление, чем у ячейки с однослойным электролитом, но и меньшее поляризационное сопротивление R_p . Для образцов 4—7 поляризационное сопротивление находится в диапазоне 10—16 Ом, в то время как у топливной ячейки 2 оно равно 22 Ом. Это означает, что ЭПО оказывает вли-

Рис. 5. Спектры импеданса топливной ячейки 4 при температуре 650°С и различных расходах водорода (а) и кислорода (б). Расход водорода, мл мин⁻¹: 1 - 20, 2 - 40, 3 - 80 (расход воздуха - 250 мл мин⁻¹); расход кислорода, мл мин⁻¹: 1 - 50, 2 - 150, 3 - 250 (расход водорода – 40 мл мин⁻¹).

яние не только на свойства подслоя YSZ, но и изменяет поверхность контакта между Ni/YSZ-анодом и YSZ-электролитом. Это может приводить к увеличению трехфазной границы между анодом и электролитом и уменьшению поляризационного сопротивления, обусловленного переносом заряда.

На рис. 5 показано влияние расходов газа на спектры импеданса топливной ячейки 4. Измерения проводились в режиме холостого хода. Видно, что в высокочастотной области расход водорода и кислорода не оказывает влияния на импеданс ячейки, а в низкочастотной области импеданс уменьшается с увеличением расхода газа. Вольт-амперные и мощностные характеристики показывают, что при разных расходах газа при низких плотностях тока потенциал ячейки не изменяется. Однако при большой плотности тока расход газов оказывает значительное влияние на ВАХ. Это говорит о том, что характеристики топливной ячейки в основном лимитируются процессом массопереноса и электрохимической реакции на межфазной границе. При уменьшении расхода газов максимальная плотность мощности уменьшается. Уменьшение плотности мощности происходит с 170 до 150 мВт см⁻² при уменьшении расхода водорода с 80 до 20 мл мин⁻¹ и с 240 до 225 мВт см⁻² при уменьшении расхода кислорода с 250 до 50 мл мин⁻¹.

Как уже говорилось выше, импеданс ячейки с тонкопленочным YSZ-электролитом в режиме холостого хода характеризуется дугами с большим радиусом на малых частотах и малым радиусом на больших частотах. При подключении электрической нагрузки импеданс ячейки имеет аналогичный вид. Это указывает на то, что существуют по крайней мере два различных процесса на электродах, соответствующих высоко- и низкочастотным дугам. Похожие спектры импеданса наблюдались в работе [18], где исследовались ТОТЭ с несущим анодом, YSZ-электролитом и LSM-YSZ/LSM-двухслойным катодом.

Спектр импеданса топливной ячейки 7 моделировался с помощью эквивалентной схемы, изображенной на рис. 6, где R_E — полное омическое сопротивление, (R_1, Q_1) и (R_2, Q_2) относятся к высоко- и низкочастотным дугам соответственно. В эквивалентную схему входят две последовательно соединенные цепочки с параллельным соединением сопротивления и элемента постоянной фазы (СРЕ).

Элемент постоянной фазы часто используется в эквивалентных схемах для моделирования импеданса и выражается в виде $Q = A^{-1} (j\omega)^{-n}$, где A – псевдоемкость, $\Phi \, \text{см}^{-2} \, \text{c}^{n}$; $\omega - \gamma$ гловая частота, рад c^{-1} ; j = $= (-1)^{1/2}$ и *n* – показатель степени СРЕ. При *n* = 1 элемент постоянной фазы представляет собой чистую емкость, при n = 0 СРЕ является сопротивлением, а при n = 0.5 СРЕ превращается в элемент Варбурга и используется для моделирования диффузии реагентов. Наличие элемента постоянной фазы в эквивалентной схеме может свидетельствовать о распределенной по поверхности реакционной способности, поверхностной неоднородности, шероховатости или фрактальной геометрии, пористости электродов, распределении тока и потенциала в соответствии с геометрией электродов [19].

В используемой нами для анализа импеданса программе Z-View элемент постоянной фазы задается двумя параметрами, называемыми CPE-T и CPE-P. Параметр CPE-T представляет собой псевдоемкость A, а CPE-P показатель степени n из уравнения (1), характеризующий геометрические свойства поверхности [20].

Значения сопротивлений R_E , R_1 , R_2 и элементов постоянной фазы Q_1 , Q_2 для топливной ячейки 7 были рассчитаны для спектров импеданса, измеренных в режиме холостого хода ячейки при различных температурах (табл. 2).

При температуре 800°С омическое сопротивление топливных ячеек с двухслойным электролитом было ~0.23 Ом см². Исходя из проводимости YSZ, равной ~0.04 См см⁻¹ при 800°С (омическое сопротивление YSZ-электролита толщиной 10 мкм ~0.025 Ом см²) [21], омическое сопротивление YSZэлектролита толщиной 3–5 мкм должно быть ~0.008–0.012 Ом см². Отличие, наблюдаемое на

Рис. 6. Спектры импеданса топливной ячейки 7, расчетный (кривая) и измеренный (точки) при температуре 650° С, а также эквивалентная схема топливной ячейки. Н₂: 40 мл мин⁻¹, воздух: 150 мл мин⁻¹.

практике, возможно, вызвано дополнительным контактным сопротивлением на границе LSM/YSZ, поскольку в нашем случае LSM-катод не был спечен при обычно используемых на практике температурах (1100–1250°C), а также сопротивлением на границе электродов с токовыми коллекторами.

С увеличением рабочей температуры поляризационные сопротивления R_1 и R_2 , так же как и постоянные времени R_1Q_1 и R_2Q_2 , соответствующие высоко- и низкочастотным дугам, значительно уменьшаются. Так, например, R_1 и R_2 при температуре 750°С равны 0.67 и 2.14 Ом, что в 2 и 6 раз меньше их соответствующих значений при 650°С. Постоянные времени R_1Q_1 и R_2Q_2 с увеличением температуры от 650 до 750°С также существенно уменьшаются, в 15 и более чем в 100 раз соответственно. При 800°С дуга с малым радиусом, соответствующая высокочастотной области спектра, вообще исчезает, и импе-

t, °C	<i>R_E</i> , Ом	Высокочастотная дуга			Низкочастотная дуга		
		<i>R</i> ₁ , Ом	$Q_1, \Phi c^n$	$R_1Q_1(\tau_{\rm B},{ m Mc})$	<i>R</i> ₂ , Ом	$Q_2, \Phi c^n$	$R_2 Q_2 (\tau_{\rm H}, {\rm Mc})$
650	0.30	1.6	$\begin{array}{l} A = 0.14 \\ n = 0.77 \end{array}$	224	13.6	A = 0.1 $n = 0.87$	1360
700	0.29	1.2	A = 0.12 $n = 0.69$	144	5.3	A = 0.05 n = 0.79	265
750	0.28	0.67	A = 0.023 n = 0.69	15.4	2.14	A = 0.006 n = 0.75	12.8
800	0.27	_	_	_	1.29	A = 0.005 n = 0.75	6.5

Таблица 2. Параметры, рассчитанные программой Z-View 2.3f для спектров импеданса топливной ячейки 7, измеренных в режиме холостого хода при различных температурах

данс моделируется с помощью одной цепочки параллельно соединенных сопротивления и элемента постоянной фазы.

Показатель степени n как в высокочастотной, так и в низкочастотной области импеданса, находился в пределах от 0.7 до 0.9 (табл. 2). Эти значения близки к тем, которые были получены в работе [22], где исследовалась кинетика электрохимической реакции на границе LSM/YSZ. Величина показателя nдля катодов, спеченных при разных температурах, изменялась от 0.5 до 0.8. Однако остается невыясненной физическая причина уменьшения n при увеличении температуры, в литературе [18, 22] говорится об аналогичной зависимости.

Поскольку вклад анодной поляризации в суммарные потери в топливной ячейке много меньше вклада катодной, то считается, что электродная поляризация в ТОТЭ, главным образом, катодная [22]. В работе [24] спектры импеданса, полученные для ТОТЭ с композитным LSM—YSZ-катодом, также аппроксимировались двумя полуокружностями. Первая, относящаяся к высокочастотной области спектра, соответствовала процессу переноса ионов кислорода из электрода в электролит. Вторая, находящаяся в низкочастотной области, соответствовала диссоциативной адсорбции кислорода и/или поверхностной диффузии кислорода.

Уменьшение напряжения на топливной ячейке при включении нагрузки сопровождалось уменьшением поляризационных сопротивлений R_1 и R_2 , а также постоянных времени R_1Q_1 и R_2Q_2 . Это говорит о том, что процесс переноса ионов кислорода и поверхностная диссоциация с диффузией активизируются при включении электрической нагрузки [18].

Полученные результаты показывают, что предложенный метод формирования тонкопленочного электролита позволяет изготавливать ТОТЭ с достаточно высокими удельными характеристиками при умеренных (650°С) температурах, а дальнейшее улучшение характеристик ТОТЭ должно быть направлено на уменьшение поляризационного сопротивления электродов, в особенности катода. Для этого планируется использовать композиционный LSM—YSZ-катод, так как известно, что применение композиционных катодов позволяет существенно увеличить трехфазную границу между катодом и электролитом, уменьшив тем самым поляризационное сопротивление переносу заряда.

ЗАКЛЮЧЕНИЕ

В работе показана перспективность методов магнетронного распыления и электронно-пучковой обработки для формирования тонкопленочного электролита среднетемпературных твердооксидных топливных элементов. Максимальная плотность мощности изготовленных с применением вышеуказанных методов топливных ячеек при температуре 650°С составила 200–250 мВт см⁻². Это в несколько раз превышает значения плотности мощности, характерной для топливных элементов с несущим электролитом в данных условиях, и было достигнуто как за счет уменьшения толщины и сопротивления YSZ-электролита, так и оптимизации его структуры. Функциональные характеристики разработанных среднетемпературных ТОТЭ могут быть существенно улучшены за счет снижения катодной поляризации, а также контактного сопротивления на границе катод/электролит и электрод/токовый коллектор.

Авторы выражают глубокую признательность К.В. Карлику и В.П. Ротштейну (Институт сильно-точной электроники СО РАН) за электронно-пуч-ковую обработку образцов и плодотворные обсуждения.

Работа была выполнена в рамках ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы (ГК № П2469).

СПИСОК ЛИТЕРАТУРЫ

- 1. Doshi R., Richards V.L., Carter J.D., Wang X.P., Krumpelt M. // J. Electrochem. Soc. 1999. V. 146. P. 1273.
- 2. *Xia C.R., Liu M.L.* // Solid State Ionics. 2001. V. 144. P. 249.
- Xia C.R., Chen F.L., Liu M.L. // Electrochem. Solid-State Lett. 2001. V. 4. P. 52.
- 4. *De Souza S., Visco S.J., De Jonghe L.C. //* Solid State Ionics. 1997. V. 98. P. 57.
- 5. Zhao F., Virkar A.V. // J. Power Sources. 2005. V. 141. P. 79.
- Nguyen T.L., Honda T., Kato T., Iimura Y., Kato K., Negishi A., Nozaki K., Shiono M., Kobayashi A., Hosoda K., Cai Z.F., Dokiya M. // J. Electrochem. Soc. 2004. V. 151 (8). P. 1230.
- Rotureau D., Viricelle J.-P., Pijolat C., Caillol N., Pijolat M. // J. Eur. Ceram. Soc. 2005. V. 25. P. 2633.
- 8. *Sarkar P., Yamarte L., Rho H.S., Johanson L. //* Int. J. Appl. Ceram. Technol. 2007. V. 4 (2). P. 103.
- Zhang L., Quan He H., Kwek W.R., Ma J., Tang E.H., Jiang S.P. // J. Am. Ceram. Soc. 2009. V. 92 (2). P. 302.
- Rifau A., Zainal Z., Mutharasu D., Fauzi A., Kiros Y., Zhu B., Zanzi R. // Am. J. Appl. Sci. 2006. V. 3 (9). P. 2020.
- 11. Wanzenberg E., Tietz F., Panjan P., Stöver B. // Solid State Ionics. 2003. V. 159. P. 1.
- Vervoort A.G.J., Scanlon P.J., Ridder M., Brongersma H.H., Welzenis R.G. // Nucl. Instrum. Methods Phys. Res., Sect. B. 2002. V. 190. P. 813.
- Hobein B., Tietz F., Stöver D., Čekada M., Panjan P. // J. Eur. Ceram. Soc. 2001. V. 21. P. 1843.
- Rotshtein V.P., Ivanov Yu.F., Proskurovsky D.I., Karlik K.V., Shulepov I.A., Markov A.B. // Surf. Coat. Technol. 2004. V. 180–181. P. 382.

ЭЛЕКТРОХИМИЯ том 47 № 4 2011

- 15. Ozur G.E., Proskurovsky D.I., Rotshtein V.P., Markov A.B. // Laser Part. Beams. 2003. V. 21. P. 157.
- 16. Soloviev A.A., Sochugov N.S., Shipilova A.V., Rotshtein V.P., Kovsharov N.F. // Int. J. Alternative Energy Ecol. 2009. V. 9 (77). P. 27.
- Rotshtein V., Ivanov Yu., Markov A. // Materials surface processing by directed energy techniques. Ch. 6 / Ed. Pauleau Y. Amsterdam: Elsevier, 2006. P. 205.
- Leng Y.J., Chan S.H., Khor K.A., Jiang S.P. // Int. J. Hydrogen Energy. 2004. V. 29. P. 1025.
- 19. Jorcin J.B., Orazem M.E., Pébère N., Tribollet B. // Electrochim. Acta. 2006. V. 51. P. 1473.

- 20. *Lopez D.A., Simison S.N., De Sanchez S.R.* // Electrochim. Acta. 2003. V. 48. P. 845.
- 21. De Souza S., Visco S.J., De Jonghe L.C. // J. Electrochem. Soc. 1997. V. 144 (3). P. 35.
- 22. *Heuveln F.* Characterisation of Porous Cathodes for Application in Solid Oxide Fuel Cells. Thesis. University of Twente, 1997. P. 189.
- 23. *Macdonald J.R.* // Solid State Ionics. 1984. V. 13. P. 147.
- 24. Kim J.D., Kim G.D., Moon J.W., Park Y.I., Lee W.H., Kobayashi K., Nagai M., Kim C.E. // Solid State Ionics. 2001. V. 143. P. 379.